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Diagrams of the linear Backlund transformation of the 
cylindrical two-dimensional Toda lattice 
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f lu’ational Laboratory For High Energy Physics ( K E K ) ,  Oho,  Tsukuba, lbaraki 305, Japan  
$ Department of Applied Mathematics,  Facult) of Engineering, Yokohama National 
UniLersity, Hodogaya-ku, Yokohama 240, Japan 

Receiked 6 March 1989 

Abstract. A fundamental  set of solutions to the linear Biicklund transformation ( LHT) is 
obtained in a general form in the cylindrically symmetric Toda  lattice. Diagrams of solutions 
generated by the L H T  are  drawn and  their local behaviours are entirely known once only 
one  solution is given. 

1. Introduction 

Since the Toda lattice was discovered twenty years ago [ 13, it has played a crucial role 
in the study of nonlinear physics [2]. Among various works on this model the 
generalisation to the two-dimensional Toda lattice ( IDTL)  has many interesting features 
and has been studied in rather more detail [3,4].  First of all it offers a simple but 
non-trivial integrable model in three-dimensional spacetime [3]. 

Besides the well known soliton solutions there have been found many solutions to 
the ZDTL. For example Nakamura obtained cylindrically symmetric solutions [ 51 
expressed by Bessel functions in analogy with the case of the two-dimensional K d v  

equation [6]. His approach is based on the use of the Backlund transformations 
discovered by Hirota [7] which have proven quite useful. Kametaka found other types 
of Backlund transformations [8] which enabled him to solve Euler-Poisson-Darboux 
types of linear differential equations to obtain solutions to the 2 r m .  with rational and 
hypergeometric forms. These studies are very interesting in themselves and should be 
quite fruitful when we investigate the 2 i n L  in its application to real physical processes. 

Following Nakamura’s investigation of the ZDTL the authors studied a pair of 
generalised recurrence formulae ( G R F )  [9] to which Bessel functions follow as a special 
case. The ZDTL can be derived as a compatibility condition [9, 101 of this pair of linear 
equations. Writing them explicitly we find them to be equivalent to the Backlund 
transformations by Hirota [ 113 which are mentioned above. 

Some detailed studies of the GRF revealed that i t  has a gauge symmetry and  a 
symmetry under the exchange of the roles of the field amplitude and the gauge field 
[12-141, which we called the dual symmetry. Namely we can write the GRF in a 
gauge-invariant form. When we fix the gauge appropriately the GRF becomes dual 
symmetric. This property of the GRF is remarkable. When the gauge field, say g,,, 
satisfies the ZDTL as a compatibility condition, the same is true for the field amplitude, 
sayf,. If g, is a solution of the ~ D T L  and the compatibility condition is satisfied, the 
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G R F  is reduced to a single linear differential equation of,f, whose coefficients are fixed 
by g , .  Then, owing to the duality of G R F , ~ , ,  itself is a solution to the ZDTL.  Therefore 
the G R F  provides a scheme of the Backlund transformation in the form of a linear 
differential equation, which we will call the linear Backlund transformation, or the 
LBT for short. This scheme enables us to obtain solutions of the ZDTL [15, 17,181, 
merely by solving the LBT. 

The LET is a second-order partial differential equation which can be solved iteratively 
to give unique and bounded solutions under certain boundary conditions [15]. 
Especially in the cylindrically symmetric case, the LBT becomes an ordinary differential 
equation [ 151. The ordinary soliton solution in multidimensional spacetime is essen- 
tially a one-dimensional excitation whose dependence on the variables is the same as 
in the case of one dimension. On the other hand, Nakamura’s cylindrically symmetric 
solutions are essentially two-dimensional excitations whose topology is not Euclidean. 
From the physical point of view, we are interested in excitations having an intrinsic 
dependence on higher dimensions, such as vortices, waves propagating in a radial 
direction, and  so on. These excitations should be considered as solutions of equations 
of motion on non-Cartesian coordinates. For example, radially propagating ion acous- 
tic waves in a collisionless plasma have been considered by Maxon and Viecelli [16] 
using the modified Kdv equation. 

From these considerations, we concern ourselves, in this paper, only with the case 
where the system keeps cylindrical symmetry. The above procedure of the LET was 
also carried out in the cylindrically symmetric case to find a series of solutions of the 
ZDTL in our previous papers [ 15, 191. 

The main purpose of this paper is to present the general form of a fundamental 
set of solutions of the LBT so as to keep the dual symmetry, and to draw a diagram 
of solutions generated by the LET. The dual symmetry becomes obscured in the 
cylindrically symmetric case. But i t  will be shown that it still plays a central role in 
generating new solutions. 

This paper is organised as follows. In  B 2 ,  we present the gauge-symmetric formula- 
tion, the duality relation and the LBT of the cylindrically symmetric >mi - ,  and develop 
a systematic way to get successive solutions. Following the results of S 2 ,  we deduce 
a unit triangle diagram of solutions in 5 3. This triangle consists of a particular solution 
of the ZDTL and a fundamental pair of solutions of the LBT generated by it. One of 
the pair will be obtained immediately from the duality relation. In B 4, we construct 
an  entire diagram of the solutions of cylindrically symmetric ZDTL, which is the main 
purpose of this paper. I n  B 5, we discuss local behaviours of the solutions generated 
by the LBT making use of the study of linear differential equations and  present some 
examples. The final section is devoted to summaries and discussions. 

2. Gauge-symmetric formulation of cylindrically symmetric ZDTL 

It has already been shown that the ZDTL system as well as the one-dimensional Toda 
lattice system has a dual symmetry between field amplitudes and gauge fields. In  other 
words, the ZDTL keeps the ‘duality relation’, which means that the field and gauge field 
can exchange their roles leaving the expression of the GRF,  and therefore of their 
compatibility condition, unchanged. By means of the duality relation, one can carry 
out the following procedures repeatedly to obtain solutions of the nonlinear ZDTL 

equation. First, once a gauge field is fixed to be a solution of the ZDTL, one solves the 
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LBT and obtains an analytical expression of a field amplitude of the ~ D T L .  Second, we 
regard the solution obtained by solving the L R T  as a gauge field, and solve the L R T  to 
obtain a successive solution. 

In the cylindrically symmetric case [15],  the dual symmetry is not manifest. We 
are, however, able to find a way to recover this important relation. Now, we shall 
review briefly the dual symmetry in the cylindrically symmetric case. 

Let us start from the bilinear cylindrical Z D T L  equation [ 5 ] :  

The duality equations for appear in the form 

where the parameters an and b,, depend merely on the discrete variable n indicating 
a lattice site. The nonlinear equation ( 1 )  is linearised into 

In g,,,, .L, = O  11 
where g,, is a solution of the ZDTL. 

From the compatibility condition of ( 2 a )  and ( 2 b ) ,  a,, and b,, are determined as [ 1 5 ]  

a,, = - n  + c'  

and 

(4 )  

(5) b,, = n - c' - c 

with arbitrary constants c'  and c, and g,, is determined so as to satisfy ( I ) ,  i.e. 

g,, ( -  a, +- ; a,, 1 gn - (a ,& l 2  - (g,l+lg,l-l - g i )  = 0. (6) 

Accordingly, i f  a solution of (6) is found, substituting i t  into (3) as g,,, one can solve 
( 6 )  and generate a successive solution. 

The duality equations ( 2 a ,  b )  can be rewritten into the duality equations for g,,,, : 
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Comparing ( 7 4  b )  with ( 2 4  b),  we notice that the roles of g, and f ; ,  are exchanged 
and, with replacement of -a,,+, in ( 7 a )  by b,, and -b, in ( 7 6 )  by a,,, two pairs of 
duality equations have the same expression. By means of the duality equations (7a ,  b) ,  
the bilinear ZDTL equation for g,,+l is linearised to a linear differential equation, i.e. 
the LBT for g,,,, , with contains the already known solution f ; ,  in its coefficients: 

When the duality equations are rewritten repeatedly, the set of parameters in the 
duality equations change subsequently as follows: 

a,, + -b,, + a, ,+,+-b, , , ,  + a,,+, . . . 
b,, + -a,,,, -+ b,,+, + -a,,,:+ b, ,+2 .  . . . 

g,, +A, 
O n  the other hand, the sequence of solutions generated by the LBT is 

f l l  +g,1+, 

& + I  +A,* ,  

From these two schemata we can draw the important result that, by choosing the set 
of parameters appropriately, g,,,, is a solution of the LBT generated by ,A, iff;,  itself 
is generated by g,,. 

3. Fundamental set of solutions to the LBT and a unit triangle 

I n  the cylindrically symmetric case, the LBT is an  ordinary second-order differential 
equation and therefore it has a fundamental set of solutions. In P 2 ,  it was shown that 
the duality relation always gives one of the solutions to the LBT. In this section, we 
will derive the other solution and present a general form of fundamental set of solutions 
to the LBT. 

The LBT can be written [5] as 

a;>[ A . A i  1 + h p~ia,, [ di 1 + AQ,? [ AA! 1 = 0 k a l  (8) 
where the coefficients are given by a known solution of the 2 t x L  in the following forms: 

( 9 )  

(10) 

Here k indicates the number of repetition of the LBT. If  we know a solution of (8), 
say another independent solution can be obtained, by the standard method, in the 
form 

o, ,  T h,, - I ,p,, = -a,, In(p A Igti‘ A -Ig,,+I) 

h Qu 1 + [a,, In(p “” h - I g,, ) ] [ a , ,  In(p ”’ h -- I g,i + I )  1. 
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From the argument of the previous section it is clear, owing to the duality relation, 
that L - 2 f n + ,  is one of the solutions generated by the gauge field h-lg, if n-lg, itself is 
generated by L-.fn. We can choose hf;, for this solution without loss of generality, i.e. 

L f n  = h - 2 f ; i + I .  (12) 

Then the other solution is given by 

Since the Wronskian of these two solutions (12) and (13) is given by 

they are independent unless n-lg,l is identically zero and constitutes a fundamental 
set of solutions of (8). 

Before going into details of drawing a general diagram we summarise the results 
we have found so far in a schematic form in figure 1. The fundamental constitutions 
of this diagram are the duality relation ( DR)  and the LBT which are indicated by broken 
and  full lines respectively. The horizontal line of the triangle with two arrows indicates 
a linearly independent pair of solutions. 

3R I 
I 

' - 3  9" 

k - 2 f n . l ' k f n  * * k f,' 

Figure 1. Unit triangle. Full lines represent generation of solutions by the L H T  and broken 
lines the I)R. 

4. Diagrams of the LBT 

I n  this section we consider successive generation of solutions based on the LET which 
we discussed in the former sections. As was shown in 4 2 the duality relation offers a 
solution generated by a given gauge (potential) field along the vertical direction. Once 
this solution is given, the argument of Q 3 enables us to find another solution in the 
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horizontal direction which is linearly independent but shares the same generation. 
Combining them together we can generate an infinite family of solutions by simply 
applying these procedures at each generation. 

Now let us assume that a solution of the ZDTL is known, say ,,g,,, and the LBT ( 8 )  
is solved to obtain a solution, say , f , .  We denote another solution of (8) ,  linearly 
independent of , J , ,  by ,x,, taking account of the fact that most of the solutions of the 
kth generation are given by those of the ( k  - 2)th generation, i.e. 

AA1 = A L 2 J l + l  

Cgn = h-2gntl. 

We draw a diagram of solutions generated by the LBT in figure 2. 
Note that all elements of the k t h  generation are written in  the kth row of this 

diagram. We also recall that the sets of parameters (a, , ,  b,l)  and ( -b, l ,  -a,,+,) must be 
used as we derive new solutions depending on either (3) or (3') corresponding to an  
even or odd  row of generation as indicated in the diagram. The most significant feature 
of this diagram is that the truly new solutions are those lying along the slanting lines 
on the extreme right and left which are indicated by bold arrows. From the construction 
it is clear that the family of solutions generated along the right extreme line is quite 
independent of the one in the left extreme. The former series can be obtained by 
integrations of functions containing o fn  only, whereas the latter contains (,A, only. 

Figure 2. Diagram of solution> bq the L I S T .  New solutions appear  in both sides of the 
diagram along the bold arroHs when we choose sets of parameters as round brackets. 

For illustration let us choose the simplest solution 1 for ,,g, and set a,, = -b,l = -n. 
Then we obtain immediately 

IJ, = J , , ( P )  and ]xl = N,,(P) 

where J ,  and N,, are Bessel and Neumann functions of order n respectively. The 
corresponding diagram is presented in figure 3. I t  is very clear in figure 3 that the 
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Figure 3. Examples of solutions by the LHT. Bessel-tbpe solutions are  obtained if  we start 
the LHT from a trivial solution. say I ,  and choose sets of parameters as  round brackets. 

series of J,, and N ,  are uncorrelated from each other. Some solutions indicated here 
explicitly are those already given in Nakamura's work [ 5 ]  and in our  previous papers 
[18, 191. 

5. Behaviour of solutions generated by the LBT and DR 

In the previous sections we have shown a method of drawing a net diagram of solutions 
of the ZDTL by means of the L R T  and the D R .  This method is very simple and systematic 
because after finding the first triangle ("g,,, f n ,  we can derive the second generation 
of triangles (,L, Og,,+I,  a,,) and ( l ,k , ( lg , l - l ,  G,,) merely by using the formula (11) and 
the D R .  It is a very important and useful fact that the DR guarantees that og,,+, , whose 
analytic feature is known, can be a solution of the LRT. This will become clear in the 
following arguments, in which we will discuss the behaviours of solutions generated 
by the LBT and the DR. 

5.1. General aspects 

Nakamura has already pointed out [ 5 ]  that a Bessel-type solution J, ,  is a divergent 
one whereas 1 + E '  X:,:!, J;,, gives a finite one as they are transformed into physical 
amplitudes of the cylindrically symmetric case cf the ZDTL system, which is the same 
situation as the cylindrically symmetric Kdv equation [ 6 ] .  This conclusion is based on 
the fact that the latter is larger than 1 at every point of the value of dependent variable 
whereas the former has zero points. These properties will be also found in  the series 
of solutions which are obtained by the L R T  and the DR. We can analyse these properties 
systematically based on the method of studying linear equations. 

First of all, let us study the local behaviour of solutions around p = 0. I n  the unit 
triangle of the diagram of the kth LBT, let us assume that the potential is expanded in 
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a power series of p. To be specific we assume the kth LBT equation is generated by 
,-,g, and  solved for Cf,. Then we expand ,-lg,, in the following form: 

A-lgn(p) = p h  l " lGn(p )  ( 1 5 )  

with the index A - I S n  indicating the lowest order of expansions around p = 0 and the 
analytic function G,(p)  at p = 0 whose first term is non-zero valued: 

G , ( ~ )  = G,,+ G,,P + . . . . (16) 

As in the general case of ordinary linear equations, analytic properties of solutions 
to the LBT (8) are governed by the coefficients APn and ,Qn, which are given by (10). 
According to the expressions ( 1 5 )  and (161, we get the following expressions for hPn 
and AQ,, around p =0:  

in which we denote A-ISn with the meaning 
- 

h - l s n  A - I s n + l .  

From the construction of the coefficients of AP,, and AQnr p = O  appears to be a 
regular singular point of the kth LBT equation. Then we can get at least one power 
series solution which converges and has no  logarithmic singularity around p = 0, 
following the usual method of power expansion. To obtain this solution, let us expand 
the solution of the kth LBT equation as 

I- 

n f ; l ( P )  = P A ' * '  C +' , =o 

with a non-zero coefficient C A .  Inserting 
equation, we get the indicia1 equation for 
form 

expansions (171, (18) and  (19) to the LBT 

the indices of power series solutions in the 

( A ~ ! I  - h a t ?  - A - l s n J ( A s n  - hbn - h - l s n - l )  = 0. (20 )  

Then the solution which converges and has no logarithmic singularity at p = 0 is 
determined to have the index 

(21)  

Furthermore, if we assume that the potential ,-,g,, is either an  even or  odd function 
of p, only c: of even j in the expansion (19) are related through the kth LBT equation. 
We can choose the coefficient c: to be zero from the equation for the power of ph'" 1. 

Hence the summation in (19) is an even function and the even-odd property of the 
solution J;1 is uniquely determined by 

Another power series solution linearly independent of the former solution with the 
index (21)  generally has a logarithmic singularity at p = 0 when the difference of two 
indices is an  integer. 

Asn = max(Aa,, + h - l . y n ,  Ab,, + A - Is,,+ 1 ) .  

in this case. 
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A detailed examination of the coefficients of the LBT is required to determine 
whether the solution with smaller index has a logarithmic singularity or  not. However, 
we would like to show in the following that a careful study of the diagram of the LBT 

and  the DR enables us to conclude that, under certain conditions, all of the solutions 
have no such singularities at p = 0. 

From the indicia1 equation (20) we have two indices given by 

We have expressions of han and kbn corresponding to even and odd values as 

21an = Q , , T / & I  + Y 2/b,, = -a  n t l  1 2 1  

? / + I a n  = a n + ,  ?/+lb,, = -a,,+, - Y 1 3 0  

where we write ,a,,+, = a,,,, and so on, following the expression of B 2. Using (4) and 
( 5 )  we get 

,a,, = - n + c - I + 1 + y z,b, = n - c + 1 

and (23) 
*,+, a ,  = -n + c - 1 b,, = n - c +  1 - y 

with arbitrary constants y and c. 
and hs; : ’  of 

(22). Their values are determined by those of ( k  - 1)th level. In  general, we d o  not 
know whether the indices of the potential, in (22) are the type of h - , s ! ‘ )  or h - l s ! , ” .  

For the diagram of the LBT and the DR to be generated consistently, however, they 
must satisfy 

k + ~ S n  = h - l S n + l  * (24) 

For a given k there are two solutions characterised by the indices 

Let us assume at this stage that (22) is satisfied by 

(22‘) I21  = hb,, +h-,s!,2Jl I J - 
n - ha,, + h - I s L 2 ’  

for all k. Then it is straightforward to see that (24) is satisfied by 

(24’) 
Namely, the particular set of indices (22’) is consistent with the diagram. I n  this case 
we can calculate all values of the indices from (23), (22‘) and (24’) and obtain 

I l l  - 121 
h + l S n  - h-lSn-1. 

and 
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where the upper and the lower values in round brackets correspond to odd and even 
values of k, respectively. The difference of (25a i  and ( 2 5 b )  is given by 

(26) 

Without loss of generality we can number the lattice such that n is always larger than 
c +  1 + y / 2 .  Then the difference (26) is negative definite as long as is an  increasing 
function on n. In other words, under the condition that the index ,js:7'1 of the function 
introduced at the beginning of series of the Backlund transformations is an increasing 
function of n, h s : : '  is smaller than k s : l '  on each level of k. 

Now let us look at the diagram in figure 2 ,  and suppose that the index 
corresponds to If;, and the above condition is satisfied for (g,,. Then ll;l converges 
and  has no  logarithmic singularity at p = 0. The index ?s,, of ?.f,, = If;, is given by 

because of the DR, which is also equal to 3s!,'' due to (24'). This implies that 
the index of 3J, must be ,s:" which is larger than 3s::1. Therefore 3,L, is also convergent 
and has no  logarithmic singularity at p = 0. It is remarkable that the analytic property 
of this function around p = 0 is given before calculating it from ( 1  1 )  explicitly. We 
can repeat the same argument to see that all functions 2iTl,f;l ( I  = 0 ,  1,2,  . . . ) along the 
right edge of the diagram are convergent and have no logarithmic singularities at p = 0. 
Similarly all zrg,  ( I  = 0, 1, 2 ,  . . . ) have the same properties. Therefore all functions in 
the right half of the diagram have been shown to be convergent and d o  not have 
logarithmic singularities as long as the index of of the initial function "g, ,  is an  
increasing function of n. We cannot say anything about the other half of the diagram 
since If,,, whose index is Is!' by definition, may not have such properties. 

The most important feature of the diagram to get the above result is that the D R  
ensures that the converging solution of the ( k  - 2)th LBT is one of the solutions of the 
kth LET with smaller values of indices. We will show later that the Bessel-type case 
offers a real example of this situation. 

Next we consider briefly the behaviours of solutions to the kth LBT equation around 
p = pOf  0. Let us expand the potential k-lg,7 and the solution J,, in power series of 
( p  - p o )  in the same forms as in the case of (15), (161, and (19).  Then we get, for the 
coefficients of the kth LBT, 

1 1 ' -  
h.T,, As::'= -2k - 2 n  + 2 c + 2 +  y + ( j . Y , , + h -  I = , ) . T , , , h .  

where h - 1 . s  = h - l s , ,  and h - l i =  h - , s , l + l  indicate the lowest powers in ( p  - p o )  of 
and  h - l g n + I  respectively and (FT) denotes the finite term(s) at p = p , , .  

and the indicia1 equation appears to be 
From the expressions ( 2 7 )  and (28) ,  p = po f 0 is again a regular singular point, 

h s i  - ( h -  I S,I + h -Is,,* 1 + 1 ) h s , i  + h - I sn ' h -  I sn+ I = 0. (29)  

Using (29), we can determine the dominant local behaviour of solutions around 
p = po f: 0. First we notice that two solutions h s ! : '  and ,si l l  of (29) satisfy 

From these equations we can draw some immediate results. 



Backlund transformation of the 211 Toda lattice 5027 

(1) As',:t and are the same (opposite) sign if h - I s , t  and A ~ l . ~ , , T l  are the same 
(opposite) sign. 

( 2 )  I f  k- Is , ,  ( A - I ~ , , + l )  is zero, then one of A . ~ , , ,  say vanishes and the other one, 
k s i 2 ' ,  is given by h - l s , ,+ l+ l  ( h - l s , , + l ) .  For example, if h .  lg,T has a simple zero and  
h-lg,,+I is a constant at p = pll, one of the solutions has a double zero whereas the 
other one is a constant. 

(3 )  If both A-]gn and A-lg,,+, are finite at p = p o ,  one of the solutions has a simple 
zero whereas the other one is a constant. 

(4)  I f  

lAs:2'/ > Imax( A- l .~ , l ,  h -  .y,,, t ) I  

hs ' , , ' ' ,  (30) shows that 

and 

' 1  < !min(A- ls , , ,  A ~ . l . ~ , ~ a l  ) I .  

(5) As',7't=Asi!1 only i f  , _ , S , , < O ,  , - , S , , + ~ < O .  
We now discuss the behaviour of solutions of the LBT at p = CC. We start by setting 

forms of expansion of the gauge potential g,, and the solution At at p = 2, in the same 
manner as the previous arguments. Let us  give the form of potential as 

a- ig , I (P )  = P A  ' " "+G;(P)  (31) 

in which G : ( p )  is a finite expansion of p - I .  Then the coefficients of the LBT are given 
by 

Apn(p = p - ' [  - (  ha,? + Ab,, - 1 + A - I gt8 + A - ,  g , ~  T I ) + o( p - ' ) ]  (32)  

(33) 

We can see directly from this expression that p = x is a so-called first class of 
irregular singular points. Then the indicial equation of this point gives values to the 
indices 

A (?I, ( p  ) = P o [  1 +( Aa,t + A - 1 g t ~  ) ( A b , !  + A ~ I gn + I )p- '  + o ( p  13. 

ACT,? = =ti. (34)  

Following the general method to construct a formal power series solution which gives 
an asymptotic expansion at infinity, we get a solution which behaves dominantly in 
the following form: 

[ l  + O ( p - ' ) l  dl , e r i +  I ? ( A c r ; , " ~ , , r ; 2 ' - ~ ~  
P 

( 3 5 )  - - e : l / J p  - I /? [  1 + o( p - l  )], 

This behaviour is almost the same as that of Bessel functions. 

5.2. The case of Bessel-type solutions 

Taking Bessel-type solutions as examples, we will show the local behaviour of solutions 
to the LBT equation around singular points concretely. Further, based on analytical 
studies, we will present results of the numerical calculation. 

First of all, three vertices of the top triangle in figure 3 are given as ,)g,, = 1, If,, = J , , ( p )  
and ] j ,  = N , , ( p ) .  Since the local behaviours of J , , ( p )  and N , , ( p )  are well studied, we 
will stop referring to these except to relate the fact that the indicial equation has two 
solutions - n  and Is:t"= n around p = 0. 
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In the case of the second LBT, three vertices o f the  triangle are obtained as Ifn = J , , ( p ) ,  
“g,,+! = 1 and ,g,, =jJ,J,,+I dp. A linear combination of ,,g,,+, and 2g,, is nothing but 
Nakamura’s solution ( 1  + E ?  X : z n  J i , ( p ) )  [5] and it is known to be positive definite. 
We will reconsider these solutions from the viewpoint of a power series expansion. 

From the forms of coefficients in the LBT equation, there seem to appear singularities 
at p = O  and  zero points of J , , ( p ) ,  all of which are regular singular points. Around 
p = 0, we obtain ?s!,‘) = 0 and  2s:2’ = 2 n  + 2  by taking ?a,, = -n, ?b,, = n, and = n in 
(22’). I f  we take account of the DR,  i t  is known that one solution having the index 

I S  ,g,,+, and the other having ?s::’ is ?gn.  Both solutions therefore have no 
logarithmic singularities around p = O .  At the zero points of J , , ( p ) ,  the indices become 
constants as ?si,’’ = 0 and  ,si:’ = 2 and the solutions have finite values at these points. 
Further, when p goes to infinity, two solutions also converge as 

( 1 ,  . 

I,‘ J,,J,,fl d p  = ?. 

Figure 4 shows the result of numerical calculation of Nakamura’s solution with E ?  = 1 
for 0 ~ ~ 6 2 0  and for O S n n 4 .  

1.50 

f” 

1.25 

1 .oo 
I I I I * 

0 5 10 15 20 

P 
Figure 4. Solutions of the second L H T  equation: ( , ( P I  = 1 +I J , , J , , + ,  d p  for O c p  $20 and 
Ocns4. 

At the next level of the LBT, we find a new solution expressed by an indefinite 
integral, whose local behaviour is not known immediately. To see it, it is effective to 
expand the solution around the singular point. According to the discussion in S 5.1, 
two indices are obtained as ls!’) = n + 1 and , s :z ’  = 3 n  + 5  when we put 7a,l = - ( n  + l ) ,  
3b,, = n + 1 and ?s(,?’ = 2 n  + 2  into (22’). One solution having the index 3s!“ is J, l+ l (p)  
and the other is ( jJ ,J , ,+ ,  d p ) ( ~ J , , + l J , , + 2  dp)/(pJ:+,)  d p  in figure 3. Also at the 
zero points of J , , - ! ( p ) ,  the latter solution has finite values. Figure 5 shows the result 
of numerical calculation of the latter solution for 0 s p G 20 and for 0 s n G 4. 

- 
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f, 
0 

I 
-0.25 L 

Figure 5. Solutions of the third LBT equation: 

In a similar manner, we get two indices around p = 0 ,  namely , .s! '=3n+4 and 
,s',"=4n + 10, taking = - ( n  + l ) ,  4b, = n + 2 ,  and js(,2' = 3n + 5  in (22 ' ) .  Also in this 
case, it is known that neither solution has a logarithmic singularity around p = 0 .  The 
result of numerical calculation of a linear combination of the two solutions is presented 
in figure 6 for 0 S p S 2 0  and for O S n S 3 .  

f" 0,5! 
0 25 

0 5 10 15 20 

P 

Figure 6. Solutions of the fourth t . 1 3 ~  equation for OS p 5 20 and O S  ti s 3. 
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6.  Discussion 

I n  the previous sections, we discussed the duality relation and the linear Backlund 
transformation in the case of the cylindrically symmetric Toda lattice equation, and  
constructed a diagram of solutions generated by the LBT and the DR. We defined a 
unit diagram in 8 3 corresponding to a fundamental set of solutions to the kth-level 
LBT equation. One of the fundamental solutions is simply given by a solution of the 
( k  - 2)th-level LBT equation as a result of the DR. Another solution independent of 
the former is obtained through the standard procedure to solve linear differential 
equations of second order. 

The essential point of this construction, which generates solutions to the ~ D T L  by 
successive linear equations, is the duality of gauge fields and matter fields. The point 
has been clarified in the discussions of 8 2 .  

Based on the discussions and conclusions of $ $ 2  and 3, we constructed the whole 
diagram of the LBT and found new solutions successively. In  the process of obtaining 
the new solutions, only the D R  and knowledge of solving ordinary differential linear 
equations have been used. As a by-product, we made it clear that Nakamura’s 
Bessel-type solutions are naturally included as solutions produced in our diagram. 

We furthermore discussed, in 8 5, behaviour of solutions to the cylindrically sym- 
metric ZDTL equation, especially around singular points of the LBT equation associated 
with singularities of potentials. We can analyse the behaviour of the ZDTL equations 
entirely based on linear theory through the LBT and the DR.  

Among the conclusions discussed in 8 5, one of the most interesting and important 
facts is that the DR gives a solution to the kth level of the LBT equation which has no 
logarithmic singularities anywhere. This enables us to determine local behaviours of 
the solutions entirely. According to the conclusions, the singularities of the LBT equation 
are always of regular type except at p =E. Moreover, if we assume that solutions of 
the first and  second level of the LBT equation have integral indices of their local power 
series expansions around any point of the independent variable, all the solutions 
produced in that half of the diagram have no singularities as long as p is finite. The 
Bessel-type solutions provide such examples. 

Concerning the behaviour of solutions it is very interesting that the infinite point 
p = oc appears to be an  irregular singular point in the LBT equation (8)  with (9) and  
(10). It is also very interesting that we can get rid of this irregularity, however, by a 
slight modification of the cylindrically symmetric ZDTL equation, as we will discuss 
briefly in the following. 

The irregularity of the singular point of (8)  at p = CO comes from the first term of 
rQn in (10). As we will see, this term corresponds to a particular choice of the boundary 
condition at p = W. To clarify this point let us recall the discussions of [ 151 where the 
ZDTL was derived as a compatibility condition of the D R  in Cartesian coordinates. 
There the D R  are given by 

where 

0,  = a +  - (a+ In gntll 
V - = a - - ( a -  In g,) 
a,  =a ,* ia ,  

(37 )  
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and c, are arbitrary constants. Equations (35)  are equivalent to Hirota's bilinear 
Backlund transformation in [ 111. We have similar equations in which the roles of g, 
and f n  are interchanged. The compatibility conditions of two equations, equation (36),  
is then 

or, writing this explicitly, 

From this equation we get a bilinear form of the ?DTL equation 

(39) 

where G(x, y )  is an n-independent function. When a potential g, satisfies the bilinear 
equation (38), the solutionf,, of (36) is obtained by solving the single linear differential 
equation 

gn - 1 g n  + I a+a -  In g,, + c+c- ~ - - G(x, J) 
g: 

a+a-f, -(a,In gf l+l)(d-fn)-(a-  In g n ) ( w n )  

+ [ G ( x , Y ) + ( ~ +  Ingn+l)(d- lngn)lfn=O (40) 

where we have fixed c, = c- = 1. It is clear from this expression that our equation (8) 
corresponds to G(x, y )  = 1.  If we had chosen G(x, y )  = 0, we would have had p =CO 

as a regular singular point associated with a different boundary condition. All the 
other singular points, including p = 0, remain regular, hence the LBT equation turns 
out to be Fuchsian. Corresponding to G(x, y )  = 0, we will be able to draw another 
set of diagrams whose elements are characterised by a different boundary condition. 
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